
 

 

 

 

Castor EDC Encryption module 
 
This document provides a brief overview of the functional and 
technical aspects of the Castor EDC encryption module. 
 
Date​: 01-08-2018 
Author​: D.L. Arts 

 

Background and module overview 

 
 
 
To give our users an additional layer of protection, we are 
launching our encryption module. This module allows study 
admins to encrypt individual Castor fields (study variables).  
 
Because encryption keys are seperated at the institute 
level, this module provides a great way to restrict access to 
Personally Identifiable Information (PII) within a 
multi-center study.  
 
 
 

   



 

Three levels of user rights granularity: 

Level 1  
No encryption rights 

No encryption rights for any institute. This user 
would never be able to decrypt or encrypt any 
information, regardless of whether they have 
access to records for an institute.  
 
Typical use-case: A data manager that needs 
access to anonymous records of one or more 
institutes, to perform monitoring or to make 
exports for a data safety monitoring board.  

Level 2 
Institute specific encryption rights 

Encryption rights for a single institute. A user with 
these rights will only be able to encrypt and 
decrypt data for one specific institute. 
 
Typical use-case: A medical doctor or research 
nurse needs to enter study data for patients that 
consented to study personnel seeing their full 
medical file including PII. These might have access 
to records of other institutes depending on the 
setup, but without encryption rights they will never 
be able to see PII for those records. 
 

Level 3  
Study wide encryption rights 

Encryption rights for all institutes in a study. 
 
Typical use-case: A scenario which would require 
the patients from all hospitals to have consented to 
giving a study admin or data manager access to 
their PII and medical data. This could be useful 
when a central organization such as a lab has to be 
able to reach out to a patient to set up an 
appointment or when there is another central need 
for identifying patients. 

   



Technical overview 

Data for fields that are configured to be encrypted are encrypted locally using ​“​libsodium​”​, 
an industry leading encryption library. Unencrypted data is never stored on disk and is 
wiped from memory as soon as it’s encrypted. We have several measures in place to ensure 
encrypted data is never accidentally captured by logs. 
 
We use symmetric key encryption with randomly generated keys that are unique per 
institute per study and Initialization Vectors for each piece of data. We generate the data 
encryption keys (DEKs) locally using high quality random number generators. Specifically, 
the algorithm to encrypt data is XSalsa20. 
 
To protect the keys, we use a technique known as ​Envelope Encryption​. After encrypting 
the data, we also then encrypt the data encryption key using ​Google’s Key Management 
System​ and store it alongside the data locally. 

 
 
By encrypting only the key, we gain the quality of Google’s encryption services but at no 
point does ​medical data ever leave our servers or touch the Google servers​. Keys can 
easily be rotated on a regular basis. 
 
In the unlikely event of a database leak, data is useless without the encryption key. 
However, to decrypt the encryption key, the attacker must breach Google’s own key 
management system as well. In the meantime, we can simply rotate keys and re-encrypt 
the data in the background making any leaked data worthless. 
 
For searchable encrypted medical data, we treat it with the same security as a password. 
We allow only exact matching search, allowing us to use a one-way hashing algorithm, 
Argon2i (and later Argon2id) and match only on that. Every individual field uses a unique 
salt ​requiring a potential hacker to break the encryption for each column individually for 
each institute. The tradeoff for making it searchable is that the same value (per field) would 

https://download.libsodium.org/doc/
https://cloud.google.com/kms/docs/envelope-encryption
https://cloud.google.com/kms/
https://cloud.google.com/kms/
https://en.wikipedia.org/wiki/Salt_(cryptography)


receive the same hash, making the search index susceptible to frequency analysis in the 
event of a data leak. Therefore, we recommend not making every column searchable. 


